Home
Class 11
MATHS
If A+B+C =pi , prove that sin 2A+sin...

If `A+B+C =pi ,` prove that
`sin 2A+sin 2B+sin 2C=4 sin Asin B sin C.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C = pi , prove that sin 2A + sin 2B + sin 2C= 4 sin A sin B sin C

If A+B+C=pi , prove that sin 2A+sin 2B+sin 2C=4 sinA sin B sinC.

If A + B + C= pi , prove that sin 2A + sin 2B -sin 2C =4cos A cos B sin C

If A+B+C=0 , then prove that sin 2A + sin 2B+ sin 2C=-4sin A sin B sin C .

If A+B+C=pi , prove that sin 2A-sin 2B+sin 2C=4cos Asin B cos C.

If A+B+C=pi , prove that sin 2A+sin 2B-sin 2C=4 cos A cos B sin C

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If A + B + C = 180^(@) , prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C

If A + B + C =pi , prove that : (sin 2A + sin 2B + sin 2C)/(sin A + sin B +sin C)= 8 sin frac (A)(2) sin frac (B)(2) sin frac (C)(2) .