Home
Class 11
MATHS
If log8(log4(log2x))=0 then x^(-2/3) equ...

If `log_8(log_4(log_2x))=0` then `x^(-2/3)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : log_4(log_3(log_2x))=0

If log_(2)[log_(3)(log_(2)x)]=1 , then x is equal to

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

If log_2 log_3 log_4 (x+1) =0, then x is :-

If (log)_3{5+4(log)_3(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) (log)_2 16

If (log)_3{5+4(log)_3(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) (log)_2 16

If (log)_3{5+4(log)_3(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) (log)_2 16

log_(2)log_(3)log_(4)(x-1)>0

Solve :log_(4)(log_(3)(log_(2)x))=0