Home
Class 14
MATHS
If a = (2 + sqrt3)/(2 - sqrt3) and b = ...

If `a = (2 + sqrt3)/(2 - sqrt3) ` and `b = (2 - sqrt3)/(2 + sqrt3)` , then the value of `(a^(2) + b^(2) +ab)` is :

A

185

B

195

C

200

D

175

Text Solution

AI Generated Solution

The correct Answer is:
To solve for the value of \( a^2 + b^2 + ab \) given \( a = \frac{2 + \sqrt{3}}{2 - \sqrt{3}} \) and \( b = \frac{2 - \sqrt{3}}{2 + \sqrt{3}} \), we can follow these steps: ### Step 1: Calculate \( a \) and \( b \) We start by calculating \( a \) and \( b \). \[ a = \frac{2 + \sqrt{3}}{2 - \sqrt{3}} \] To simplify \( a \), we can multiply the numerator and denominator by the conjugate of the denominator: \[ a = \frac{(2 + \sqrt{3})(2 + \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})} \] Calculating the denominator: \[ (2 - \sqrt{3})(2 + \sqrt{3}) = 2^2 - (\sqrt{3})^2 = 4 - 3 = 1 \] Calculating the numerator: \[ (2 + \sqrt{3})^2 = 2^2 + 2 \cdot 2 \cdot \sqrt{3} + (\sqrt{3})^2 = 4 + 4\sqrt{3} + 3 = 7 + 4\sqrt{3} \] Thus, we have: \[ a = 7 + 4\sqrt{3} \] Now, calculating \( b \): \[ b = \frac{2 - \sqrt{3}}{2 + \sqrt{3}} \] Similarly, we multiply by the conjugate: \[ b = \frac{(2 - \sqrt{3})(2 - \sqrt{3})}{(2 + \sqrt{3})(2 - \sqrt{3})} \] The denominator is still 1, and the numerator is: \[ (2 - \sqrt{3})^2 = 2^2 - 2 \cdot 2 \cdot \sqrt{3} + (\sqrt{3})^2 = 4 - 4\sqrt{3} + 3 = 7 - 4\sqrt{3} \] Thus, we have: \[ b = 7 - 4\sqrt{3} \] ### Step 2: Calculate \( a^2 + b^2 + ab \) Now we need to find \( a^2 + b^2 + ab \). Using the identity \( a^2 + b^2 = (a + b)^2 - 2ab \): 1. Calculate \( a + b \): \[ a + b = (7 + 4\sqrt{3}) + (7 - 4\sqrt{3}) = 14 \] 2. Calculate \( ab \): \[ ab = \left( \frac{2 + \sqrt{3}}{2 - \sqrt{3}} \right) \left( \frac{2 - \sqrt{3}}{2 + \sqrt{3}} \right) = \frac{(2 + \sqrt{3})(2 - \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})} = \frac{4 - 3}{1} = 1 \] 3. Now substitute into the identity: \[ a^2 + b^2 = (a + b)^2 - 2ab = 14^2 - 2 \cdot 1 = 196 - 2 = 194 \] 4. Finally, calculate \( a^2 + b^2 + ab \): \[ a^2 + b^2 + ab = 194 + 1 = 195 \] ### Final Answer: The value of \( a^2 + b^2 + ab \) is \( \boxed{195} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If a=(2 + sqrt(3))/(2-sqrt(3)) and b = (2-sqrt(3))/(2+ sqrt(3)) , then the value of a^(2)+b^(2)+ab is :

If a=2+sqrt3 , then the value of (a^(2)+(1)/(a^(2))) is

(2-sqrt3)(sqrt3+2)

If a=(sqrt(3)+1)/(sqrt(3)-1) and b=(sqrt(3)-1)/(sqrt(3)+1) ,find the value of a^(2)+ab-b^(2)