Home
Class 14
MATHS
If sec theta - cosec theta = 0 , then th...

If `sec theta - cosec theta = 0` , then the value of `(sec theta + cosec theta)` is :

A

`(sqrt3)/(2)`

B

`(2)/(sqrt3)`

C

0

D

`2 sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sec \theta - \csc \theta = 0 \) and find the value of \( \sec \theta + \csc \theta \), we can follow these steps: ### Step 1: Set up the equation Given: \[ \sec \theta - \csc \theta = 0 \] This implies: \[ \sec \theta = \csc \theta \] ### Step 2: Rewrite secant and cosecant in terms of sine and cosine Recall the definitions: \[ \sec \theta = \frac{1}{\cos \theta} \quad \text{and} \quad \csc \theta = \frac{1}{\sin \theta} \] Substituting these into the equation gives: \[ \frac{1}{\cos \theta} = \frac{1}{\sin \theta} \] ### Step 3: Cross-multiply to eliminate the fractions Cross-multiplying results in: \[ \sin \theta = \cos \theta \] ### Step 4: Solve for theta The equation \( \sin \theta = \cos \theta \) holds true when: \[ \tan \theta = 1 \] This occurs at: \[ \theta = 45^\circ + n \cdot 180^\circ \quad (n \in \mathbb{Z}) \] ### Step 5: Calculate secant and cosecant at \( \theta = 45^\circ \) Now, substituting \( \theta = 45^\circ \): \[ \sec 45^\circ = \frac{1}{\cos 45^\circ} = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2} \] \[ \csc 45^\circ = \frac{1}{\sin 45^\circ} = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2} \] ### Step 6: Find \( \sec \theta + \csc \theta \) Now, we can find: \[ \sec 45^\circ + \csc 45^\circ = \sqrt{2} + \sqrt{2} = 2\sqrt{2} \] ### Conclusion Thus, the value of \( \sec \theta + \csc \theta \) is: \[ \boxed{2\sqrt{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sec theta + cos theta = 2 , then the value of sec^(2) theta + cosec^(2) theta is :

If sec theta - cosec theta = 0 ,then the value of tan theta + cot theta is

If 5 sin theta - 12 cos theta = 0 , find the values of sec theta and cosec theta .

If 5sec theta-12 cosec theta=0 , find the values of sec theta, cos theta and sin theta .

If 3 sin theta - 4 cos theta = 0 , then find the values of tan theta , sec theta and cosec theta .

If tan ^(2) theta + cot^(2) theta = 2 , then what is the value of 2^(sec theta cosec theta ) ?

If sec theta-csc theta=(4)/(3) then what is the value of sin theta-cos theta