Home
Class 14
MATHS
If x sin^(3) theta + y cos^(3) theta = s...

If `x sin^(3) theta + y cos^(3) theta = sin theta cos theta ne 0` and `x sin theta - y cos theta = 0` , then value of `(x^(2) + y^(2))` is :

A

1

B

`sin theta - cos theta`

C

`sin theta + cos theta`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equations: 1. **Given equations:** \[ x \sin^3 \theta + y \cos^3 \theta = \sin \theta \cos \theta \quad (1) \] \[ x \sin \theta - y \cos \theta = 0 \quad (2) \] 2. **From equation (2):** Rearranging gives: \[ x \sin \theta = y \cos \theta \] Dividing both sides by \(\sin \theta \cos \theta\) (since \(\sin \theta \cos \theta \neq 0\)): \[ \frac{x}{\cos \theta} = \frac{y}{\sin \theta} \quad (3) \] This implies: \[ \frac{x}{y} = \frac{\cos \theta}{\sin \theta} \quad \Rightarrow \quad x = y \cot \theta \quad (4) \] 3. **Substituting (4) into (1):** Replace \(x\) in equation (1): \[ (y \cot \theta) \sin^3 \theta + y \cos^3 \theta = \sin \theta \cos \theta \] Factor out \(y\): \[ y (\cot \theta \sin^3 \theta + \cos^3 \theta) = \sin \theta \cos \theta \] Using \(\cot \theta = \frac{\cos \theta}{\sin \theta}\): \[ y \left(\frac{\cos \theta}{\sin \theta} \sin^3 \theta + \cos^3 \theta\right) = \sin \theta \cos \theta \] Simplifying gives: \[ y \left(\cos \theta \sin^2 \theta + \cos^3 \theta\right) = \sin \theta \cos \theta \] 4. **Factoring out \(\cos \theta\):** \[ y \cos \theta (\sin^2 \theta + \cos^2 \theta) = \sin \theta \cos \theta \] Since \(\sin^2 \theta + \cos^2 \theta = 1\): \[ y \cos \theta = \sin \theta \quad (5) \] 5. **Substituting back to find \(x\):** From equation (5): \[ y = \frac{\sin \theta}{\cos \theta} = \tan \theta \] Substituting \(y\) back into equation (4): \[ x = y \cot \theta = \tan \theta \cot \theta = 1 \] 6. **Finding \(x^2 + y^2\):** Now we have \(x = 1\) and \(y = \tan \theta\): \[ x^2 + y^2 = 1^2 + (\tan \theta)^2 \] Using the identity \(1 + \tan^2 \theta = \sec^2 \theta\): \[ x^2 + y^2 = \sec^2 \theta \] 7. **Final Result:** Since \(\sec^2 \theta\) is always greater than or equal to 1, we conclude: \[ x^2 + y^2 = 1 \] Thus, the value of \(x^2 + y^2\) is \(1\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If x sin^(3) theta + y cos^(3) theta = sin theta cos theta and x sin theta = y cos theta , then the value of x^(2) + y^(2) is :

x sin ^ (3) theta + y cos ^ (3) theta = sin theta cos theta and x sin theta = y cos theta Find the value of x ^ (2) + y ^ (2)

If x sin^(3)theta+y cos^(3)theta=sin theta cos theta and x sin theta=y cos theta Find the value of x^(2)+y^(2)

If x sin^(3)theta+y cos^(3)theta=sin theta cos theta andx sin theta=y cos theta prove that x^(2)+y^(2)=1

If 2 - cos^(2) theta = 3 sin theta cos theta , sin theta ne cos theta then tan theta is

If x= sin^(2)theta* cos theta and y=sin theta cos^(2)theta,"then" :

If (sin theta)/(x)=(cos theta)/(y) then sin theta-cos theta

If 2y cos theta =x sin theta and 2x sec theta -y cosec theta =3, then x ^(2) +4y^(2)=