Home
Class 14
MATHS
If u(n) = cos^(n) alpha + sin^(n) alpha ...

If `u_(n) = cos^(n) alpha + sin^(n) alpha` , then the value of `2 u_(6) - 3 u_(4) +1` is :

A

1

B

4

C

6

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \(2u_6 - 3u_4 + 1\), where \(u_n = \cos^n \alpha + \sin^n \alpha\). ### Step 1: Calculate \(u_6\) We start by substituting \(n = 6\) into the formula for \(u_n\): \[ u_6 = \cos^6 \alpha + \sin^6 \alpha \] ### Step 2: Use the identity for \(u_6\) We can use the identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Let \(a = \cos^2 \alpha\) and \(b = \sin^2 \alpha\). Then: \[ u_6 = (\cos^2 \alpha + \sin^2 \alpha)(\cos^4 \alpha - \cos^2 \alpha \sin^2 \alpha + \sin^4 \alpha) \] Since \(\cos^2 \alpha + \sin^2 \alpha = 1\), we have: \[ u_6 = \cos^4 \alpha - \cos^2 \alpha \sin^2 \alpha + \sin^4 \alpha \] Now, we can express \(\cos^4 \alpha + \sin^4 \alpha\) using the identity: \[ \cos^4 \alpha + \sin^4 \alpha = (\cos^2 \alpha + \sin^2 \alpha)^2 - 2\cos^2 \alpha \sin^2 \alpha = 1 - 2\cos^2 \alpha \sin^2 \alpha \] Thus, we can rewrite \(u_6\): \[ u_6 = 1 - 3\cos^2 \alpha \sin^2 \alpha \] ### Step 3: Calculate \(u_4\) Now, we substitute \(n = 4\): \[ u_4 = \cos^4 \alpha + \sin^4 \alpha \] Using the identity we derived earlier: \[ u_4 = 1 - 2\cos^2 \alpha \sin^2 \alpha \] ### Step 4: Substitute \(u_6\) and \(u_4\) into the expression Now we substitute \(u_6\) and \(u_4\) into the expression \(2u_6 - 3u_4 + 1\): \[ 2u_6 = 2(1 - 3\cos^2 \alpha \sin^2 \alpha) = 2 - 6\cos^2 \alpha \sin^2 \alpha \] \[ 3u_4 = 3(1 - 2\cos^2 \alpha \sin^2 \alpha) = 3 - 6\cos^2 \alpha \sin^2 \alpha \] Now substituting these into the expression: \[ 2u_6 - 3u_4 + 1 = (2 - 6\cos^2 \alpha \sin^2 \alpha) - (3 - 6\cos^2 \alpha \sin^2 \alpha) + 1 \] ### Step 5: Simplify the expression Now simplify: \[ = 2 - 6\cos^2 \alpha \sin^2 \alpha - 3 + 6\cos^2 \alpha \sin^2 \alpha + 1 \] The terms \(-6\cos^2 \alpha \sin^2 \alpha\) and \(+6\cos^2 \alpha \sin^2 \alpha\) cancel out: \[ = 2 - 3 + 1 = 0 \] ### Final Answer Thus, the value of \(2u_6 - 3u_4 + 1\) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If mu_(n) = cos^(n)alpha + sin^(n)alpha , then the value of 2mu_(6)- 3mu_(4) +1 is:

If a_(n)=cos^(n)alpha+sin^(n)alpha then 2a_(6)-3a_(4)=

If u_(n) = sin ^(n) theta + cos ^(n) theta, then 2 u_(6) -3 u_(4) is equal to

If u _(n) = int _(0) ^(pi//2) x ^(n) sin x dx, n in N then the value of u _(10) + 90 u _(s) is

cos (n + 1) alpha cos (n-1) alpha + sin (n + 1) alpha sin (n-1) alpha =