Home
Class 14
MATHS
If x**y=x^(2)+y^(2)+1, what is the value...

If `x**y=x^(2)+y^(2)+1`, what is the value of `(4**5)/(3**2)`?

A

`(3)/(7)`

B

3

C

`(10)/(3)`

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((4^5)/(3^2)\) using the given operation defined as \(x \star y = x^2 + y^2 + 1\). ### Step-by-Step Solution: 1. **Define the operation**: According to the problem, the operation \(x \star y\) is defined as: \[ x \star y = x^2 + y^2 + 1 \] 2. **Calculate \(4 \star 5\)**: - Substitute \(x = 4\) and \(y = 5\) into the operation: \[ 4 \star 5 = 4^2 + 5^2 + 1 \] - Calculate \(4^2\) and \(5^2\): \[ 4^2 = 16 \quad \text{and} \quad 5^2 = 25 \] - Now substitute these values back into the equation: \[ 4 \star 5 = 16 + 25 + 1 = 42 \] 3. **Calculate \(3 \star 2\)**: - Substitute \(x = 3\) and \(y = 2\) into the operation: \[ 3 \star 2 = 3^2 + 2^2 + 1 \] - Calculate \(3^2\) and \(2^2\): \[ 3^2 = 9 \quad \text{and} \quad 2^2 = 4 \] - Now substitute these values back into the equation: \[ 3 \star 2 = 9 + 4 + 1 = 14 \] 4. **Calculate \(\frac{4 \star 5}{3 \star 2}\)**: - Now that we have both values, we can compute: \[ \frac{4 \star 5}{3 \star 2} = \frac{42}{14} \] - Simplifying this gives: \[ \frac{42}{14} = 3 \] ### Final Answer: The value of \(\frac{4 \star 5}{3 \star 2}\) is \(3\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If x * y = x^2+y^2 then the value of (4 * 5) * 3 is

If x^(4) +x^(2)y^(2)+y^(4)=21 , and x^(2)+xy+y^(2)=3 then what is the value of 4xy?

If (2x-5y)^3-(2x+5y)^3=y[Ax^2+By^2] , then what is the value of (2A-B) ?

If (x - ( 1)/( 3))^(2) + ( y - 4)^(2) = 0 , then what is the value of ( y +x)/( y -x) ?

If ((5x-y))/((5x + y)) =3/7, what is the value of ((4x ^(2) + y ^(2) -4 xy ))/( ( 9x ^(2) + 16 y^(2) + 24 xy)) ?

If x-4y= 0 and x+2y= 24 , then what is the value of (2x+3y)//(2x-3y) ?

If x= (sqrt""5) + 1 and y = (sqrt""5) -1 , then what is the value of (x^(2)//y^(2)) + (y^(2)//x^(2)) + 4[(x//y) + (y//x)]+6 ?

If (i) 4x+5y=83 and (3x)/(2y)=(21)/(22), then what is the value of y-x? (ii) (x)/(4)-(x-3)/(6)=1 then find the value of x.