Home
Class 14
MATHS
If tan alpha+cot alpha=sqrt3, then tan^(...

If `tan alpha+cot alpha=sqrt3`, then `tan^(3)alpha+cot^(3)alpha` is equal to

A

0

B

`sqrt3`

C

`3sqrt3`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan^3 \alpha + \cot^3 \alpha \) given that \( \tan \alpha + \cot \alpha = \sqrt{3} \). ### Step-by-Step Solution: 1. **Let \( x = \tan \alpha \)**: - Then, \( \cot \alpha = \frac{1}{x} \). - Therefore, we can rewrite the equation as: \[ x + \frac{1}{x} = \sqrt{3} \] 2. **Multiply both sides by \( x \)**: - This gives us: \[ x^2 + 1 = \sqrt{3} x \] 3. **Rearranging the equation**: - We can rearrange it to form a quadratic equation: \[ x^2 - \sqrt{3} x + 1 = 0 \] 4. **Using the identity for cubes**: - We know that: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] - Here, \( a = \tan \alpha \) and \( b = \cot \alpha \). - Therefore, we can express \( \tan^3 \alpha + \cot^3 \alpha \) as: \[ \tan^3 \alpha + \cot^3 \alpha = (\tan \alpha + \cot \alpha)((\tan \alpha)^2 - \tan \alpha \cot \alpha + (\cot \alpha)^2) \] 5. **Calculating \( \tan^2 \alpha + \cot^2 \alpha \)**: - We can find \( \tan^2 \alpha + \cot^2 \alpha \) using the identity: \[ \tan^2 \alpha + \cot^2 \alpha = (x + \frac{1}{x})^2 - 2 = (\sqrt{3})^2 - 2 = 3 - 2 = 1 \] 6. **Calculating \( \tan \alpha \cot \alpha \)**: - We know that: \[ \tan \alpha \cot \alpha = 1 \] 7. **Putting it all together**: - Now substituting back into the identity: \[ \tan^3 \alpha + \cot^3 \alpha = (\tan \alpha + \cot \alpha)((\tan^2 \alpha + \cot^2 \alpha) - \tan \alpha \cot \alpha) \] - This simplifies to: \[ \tan^3 \alpha + \cot^3 \alpha = \sqrt{3}(1 - 1) = \sqrt{3} \cdot 0 = 0 \] ### Final Answer: \[ \tan^3 \alpha + \cot^3 \alpha = 0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan alpha + cot alpha =m , then: tan^(4)alpha +cot^(4)alpha=

If tan alpha + cot alpha =2 , then tan^(20)alpha + cot^(20)alpha=

If tan alpha+cot alpha=m then value of tan^(4)alpha+cot^(4)alpha is

If tan alpha+cot alpha=2 then

If tan alpha+cotalpha=2 , then tan^(20)alpha+cot^(20)alpha =

If tan alpha+cot alpha=a, then the value of tan^(4)alpha+cot^(4)alpha is equal to

If tan alpha + cot alpha=a , then the value of tan^(4)alpha + cot^(4)alpha is equal to

Expression tan^(2)alpha + cot^(2)alpha is:

If tan alpha +cot alpha =a then the value of tan^(4) alpha +cot^(4) alpha=