Home
Class 14
MATHS
Evaluate : (cot40^(@))/(tan50^(@))-(1)...

Evaluate :
`(cot40^(@))/(tan50^(@))-(1)/(2)((cos30^(@))/(sin60^(@)))`

A

`(3)/(2)`

B

1

C

`(1)/(2)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \[ \frac{\cot 40^\circ}{\tan 50^\circ} - \frac{1}{2} \left( \frac{\cos 30^\circ}{\sin 60^\circ} \right), \] we will follow these steps: ### Step 1: Simplify \(\frac{\cot 40^\circ}{\tan 50^\circ}\) We know that: \[ \tan(90^\circ - x) = \cot x. \] Thus, \[ \tan 50^\circ = \cot(90^\circ - 50^\circ) = \cot 40^\circ. \] This means: \[ \frac{\cot 40^\circ}{\tan 50^\circ} = \frac{\cot 40^\circ}{\cot 40^\circ} = 1. \] ### Step 2: Simplify \(\frac{1}{2} \left( \frac{\cos 30^\circ}{\sin 60^\circ} \right)\) We know the values of \(\cos 30^\circ\) and \(\sin 60^\circ\): \[ \cos 30^\circ = \frac{\sqrt{3}}{2}, \quad \sin 60^\circ = \frac{\sqrt{3}}{2}. \] Thus, \[ \frac{\cos 30^\circ}{\sin 60^\circ} = \frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}} = 1. \] Now, substituting this back into our expression gives: \[ \frac{1}{2} \left( \frac{\cos 30^\circ}{\sin 60^\circ} \right) = \frac{1}{2} \times 1 = \frac{1}{2}. \] ### Step 3: Combine the results Now we can substitute back into our original expression: \[ 1 - \frac{1}{2} = \frac{2}{2} - \frac{1}{2} = \frac{1}{2}. \] ### Final Result Thus, the value of the expression is \[ \frac{1}{2}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(3cot40^(@))/(tan50^(@))- (1)/(2)((cos35^(@))/(sin55^(@))) = …………

The value of (cot 40^(@))/(tan50^(@))-(1)/(2)(cos35^(@))/(sin55^(@)) is :

(3 cot 40^(@))/(tan 50^(@)) - (1)/(2)((cos 35^(@))/(sin 55^(@))) = _________

((tan60^(@)+1)/(tan60^(@)-1))^(2)=(1+cos30^(@))/(1-cos30^(@))

Evaluate : (tan45^(@))/(2sin30^(@)-cos60^(@))

Evaluate : (3tan25^(@)tan40^(@)tan50^(@)tan65^(@)-(1)/(2)tan^(2)60^(@))/(4(cos^(2)29^(@)+cos^(2)61^(2)))

Show that : (i) (1-sin60^(@))/(cos60^(@))=(tan60^(@)-1)/(tan60^(@)+1) (ii) (cos30^(@)+sin60^(@))/(1+sin30^(@)+cos60^(@))=cos30^(@)

Without using trigonometric tables , evaluate : (i) (sin40^(@))/(cos50^(@))+(3tan50^(@))/(cot40^(@)) (ii) (sec37^(@))/("cosec "53^(@))-(tan20^(@))/(cot70^(@)) (iii) (cos74^(@))/(sin16^(@))+(sin12^(@))/(cos78^(@))-sin18^(@)sec72^(@) (iv) sin35^(@)sec55^(@)+(4sec32^(@))/("cosec "58^(@))

(sin30^(@))/(cos45^(@))+(cot45^(@))/(sec60^(@))-(sin60^(@))/(tan45^(@))+(cos30^(@))/(sin90^(@))=

Evaluate : 3 cos^(2)60^(@)sec^(2)30^(@)-2 sin^(2)30^(@)tan^(2)60^(@)