Home
Class 14
MATHS
If tan(theta-30^(@))=(1)/(sqrt3), then t...

If `tan(theta-30^(@))=(1)/(sqrt3)`, then the value of `theta` is

A

`0^(@)`

B

`30^(@)`

C

`60^(@)`

D

`90^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan(\theta - 30^\circ) = \frac{1}{\sqrt{3}} \), we can follow these steps: ### Step 1: Identify the angle whose tangent is \( \frac{1}{\sqrt{3}} \) The value \( \frac{1}{\sqrt{3}} \) corresponds to the angle \( 30^\circ \) because: \[ \tan(30^\circ) = \frac{1}{\sqrt{3}} \] ### Step 2: Set up the equation From the equation \( \tan(\theta - 30^\circ) = \tan(30^\circ) \), we can conclude that: \[ \theta - 30^\circ = 30^\circ + n \cdot 180^\circ \quad \text{for any integer } n \] ### Step 3: Solve for \( \theta \) To find \( \theta \), we can rearrange the equation: \[ \theta = 30^\circ + 30^\circ + n \cdot 180^\circ \] \[ \theta = 60^\circ + n \cdot 180^\circ \] ### Step 4: Determine the principal value For the principal value, we can take \( n = 0 \): \[ \theta = 60^\circ \] ### Conclusion Thus, the value of \( \theta \) is: \[ \theta = 60^\circ \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan theta=(1)/(sqrt(3)), then find the value of (2tan theta)/(1-tan^(2)theta)

If 3tan(theta-30)=tan(theta+120) then the value of cos2 theta equals

If (1+tan theta )/(1- tan theta)=sqrt(3) , then find the value of theta .

If sectheta + tan theta = sqrt(3) , then the positive value of sin theta is:

If tan theta=sqrt2 , then the value of theta is :

If tan^(2)theta-(1+sqrt(3))tan theta+sqrt(3)=0, then the general value of theta is

If tan^(2)theta-(1+sqrt(3))tan theta+sqrt(3)=0, then the general value of theta is

(tan3 theta-1)/(tan3 theta+1)=sqrt(3), then the general value of theta