Home
Class 14
MATHS
If cos alpha=(5)/(13) and 0 lt alpha lt ...

If `cos alpha=(5)/(13) and 0 lt alpha lt 90^(@)`, then the value of `cot alpha+"cosec "alpha` is

A

2

B

3.5

C

4

D

1.5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cot \alpha + \csc \alpha \) given that \( \cos \alpha = \frac{5}{13} \) and \( 0 < \alpha < 90^\circ \). ### Step-by-Step Solution: 1. **Identify the Triangle Sides**: Given \( \cos \alpha = \frac{5}{13} \), we can interpret this in the context of a right triangle where: - The adjacent side (base) = 5 - The hypotenuse = 13 2. **Use Pythagorean Theorem to Find the Opposite Side**: According to the Pythagorean theorem: \[ \text{hypotenuse}^2 = \text{base}^2 + \text{perpendicular}^2 \] Plugging in the values: \[ 13^2 = 5^2 + \text{perpendicular}^2 \] \[ 169 = 25 + \text{perpendicular}^2 \] \[ \text{perpendicular}^2 = 169 - 25 = 144 \] Taking the square root: \[ \text{perpendicular} = \sqrt{144} = 12 \] 3. **Calculate \( \cot \alpha \) and \( \csc \alpha \)**: - \( \cot \alpha = \frac{\text{base}}{\text{perpendicular}} = \frac{5}{12} \) - \( \csc \alpha = \frac{\text{hypotenuse}}{\text{perpendicular}} = \frac{13}{12} \) 4. **Add \( \cot \alpha \) and \( \csc \alpha \)**: \[ \cot \alpha + \csc \alpha = \frac{5}{12} + \frac{13}{12} = \frac{5 + 13}{12} = \frac{18}{12} \] Simplifying: \[ \frac{18}{12} = \frac{3}{2} = 1.5 \] ### Final Answer: Thus, the value of \( \cot \alpha + \csc \alpha \) is \( 1.5 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 lt alpha lt pi/6 , then the value of (alpha cosec alpha ) is

If cos9alpha=sinalpha and 9alpha lt 90^(@) , then the value of tan5alpha is

If sinalpha=5/13 and pi/2ltalphaltpi then the value of (secalpha+ tan alpha)/(cosec alpha - cot alpha)

if 7 sin alpha = 24 cos alpha 0 lt alpha lt pi/2 . Then the value of 14 tan alpha - 75 cos alpha-7 sec alpha is

If sec alpha=13/5, (0 lt alpha lt pi/2) , then the value of (2-3cotalpha)/(4-9sqrt(sec^(2)alpha-1)) is

If 3 tan alpha=4and 180^(@) lt alpha lt 270^(@), "then" : 2 cot alpha-5 cos alpha + sin alpha= A)3.7 B)4.7 C)5.7 D)6.7

If 0 lt alpha lt (pi)/(3) , then prove that alpha (sec alpha) lt (2pi)/(3).

If sin alpha sin beta-cos alpha cos beta+1=0, then the value of 1+cot alpha tan beta is

If 0 lt alpha lt (pi)/(16) and (1+tan alpha)(1+tan4alpha)=2 , then the value of alpha is equal to

If sin^(2)alpha=cos^(2)alpha , then the value of (cot^(6)alpha-cot^(2)alpha) is