Home
Class 12
MATHS
I(1)=int(0)^(3 pi)f(cos^(2)x)dxquad " an...

I_(1)=int_(0)^(3 pi)f(cos^(2)x)dxquad " and "quad I_(2)=int_(0)^( pi)f(cos^(2)x)dx" then "

Promotional Banner

Similar Questions

Explore conceptually related problems

I=int_(0)^(2 pi)cos^(5)x*dx

If I_(1)=int_(0)^(3 pi)f(cos^(2)x)dx and I_(2)=int_(0)^( pi)f(cos^(2)x)dx then (a)I_(1)=I_(2)(2)I_(1)=2I_(2)(3)I_(1)=5I_(2)(4)I_(1)=3I_(2)

Let I_(1)=int_(0)^(3 pi)(f(cos^(2)x)dxI_(2)=int_(0)^(2 pi)(f(cos^(2)x)dx and I_(3)=int_(0)^( pi)(f(cos^(2)x)dx, then (A)I_(1)+2P_(2)+3I_(2)=0(B)I_(1)=2I_(2)+I_(3)(C)I_(2)+I_(3)=I_(1)(D)I_(1)=2I_(3)

If I_(1)= int_(0)^(3pi) f( sin^(2) x)dx and I_(2)= int_(0)^(pi) f(sin^(2)x)dx then

I=int_(0)^(2 pi)cos^(-1)(cos x)dx

If P=int_(0)^(3pi)f(cos^(2)x) dx and Q=int_(0)^(pi) f(cos^(2)x)dx , then -

If P = int_(0)^(3pi) f(cos^(2)x)dx and Q=int_(0)^(pi) f(cos^(2)x)dx , then

If I_(1)=int_(0)^( pi)x sin xe^(cos4x)dx , and I_(2)=int_(0)^( pi/2)cos xe^(cos4x)dx ,then the value of [(I_(1))/(I_(2))] is (where [.] denotes the greatest integer function)