Home
Class 12
MATHS
If A is an invertible matrix of order ...

If `A` is an invertible matrix of order 3, then which of the following is not true (a) `|a d j\ A|=|A|^2` (b) `(A^(-1))^(-1)=A` (c) If `B A=C A` , then `B!=C` , where `B` and `C` are square matrices of order 3 (d) `(A B)^(-1)=B^(-1)A^(-1)` , where `B=([b_(i j)])_(3xx3)` and `|B|!=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B = C, where A and B are matrices of order 3 xx 5 , then order of C is :

If A + B = C , where A and B are matrices of order 2 xx 3 , then order of C is :

If A+ B = C where B and A are matrices of order 3xx3 then the order of matrix C is :

If A and B are invertible matrices, which of the following statement is not correct. a d j\ A=|A|A^(-1) (b) det(A^(-1))=(detA)^(-1) (c) (A+B)^(-1)=A^(-1)+B^(-1) (d) (A B)^(-1)=B^(-1)A^(-1)

If A and B are invertible matrices, which of the following statement is not correct. a d j\ A=|A|A^(-1) (b) det(A^(-1))=(detA)^(-1) (c) (A+B)^(-1)=A^(-1)+B^(-1) (d) (A B)^(-1)=B^(-1)A^(-1)

For an invertible square matrix of order 3 with real entries A^-1=A^2 then det A= (A) 1/3 (B) 3 (C) 0 (D) 1

For an invertible square matrix of order 3 with real entries A^-1=A^2 then det A= (A) 1/3 (B) 3 (C) 0 (D) 1

If A is a square matrix of order 3, then value of |(A - A^(T))^(2005) | is equal to A)1 B)3 C)-1 D)0

If A is a square matrix of order 3 and |A|=3 then |adjA| is (A) 3 ; (B) 9 ; (C) (1)/(3) ; (D) 0

Let A,B and C be square matrices of order 3xx3 with real elements. If A is invertible and (A-B)C=BA^(-1), then