Home
Class 12
MATHS
मध्यमान प्रमेय f(b) -f (a) =(b-a) f'(x1)...

मध्यमान प्रमेय `f(b) -f (a) =(b-a) f'(x_1) ,a x_1 ltb` से यदि `f(x)=(1)/(x),` तो `x_1` का मान है

Promotional Banner

Similar Questions

Explore conceptually related problems

From mean value theorem, f(b)-f(a) = (b-a)f^(1)(x_(1)), a lt x_(1) lt b if f(x) = ( 1)/( x) then x_(1) =

From mean value theoren : f(b)-f(a)=(b-a)f^(prime)(x_1); a lt x_1 lt b if f(x)=1/x , then x_1 is equal to

From mean value theoren : f(b)-f(a)=(b-a)f^(prime)(x_1); a lt x_1 lt b if f(x)=1/x , then x_1 is equal to

From mean value theoren :f(b)-f(a)=(b-a)f'(x_(1));a

If A =(x-1)/(x+1) then, the value of A-1/A is: यदि A =(x-1)/(x+1) तो A-1/A का मान:

If f(x) = (x-1)/(x+1) , then f[1/f(x)] =

If f(x)=(x)/(x-1) , then evaluate : (f(a//b))/(f(b//a))

If f(x)=(x)/(x-1) , then evaluate : (f(a//b))/(f(b//a))

If f(x)=(x+1)/(x-1),x!=1 then (f(f(f(f(x)))))=f(x)

If f(x)=(x-1)/(x+1) then show that f(1/x)=-f(x) and f(-1/x)=(-1)/f(x)