Home
Class 11
MATHS
Suppose S(a)(x)=sec^(-1)((x)/(a))+sec^(-...

Suppose `S_(a)(x)=sec^(-1)((x)/(a))+sec^(-1)(a)` for `a!=0` .If `S_(a)(x)=S_(b)(x)` for `a!=b` then `x=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve,(sec^(-1))(x)/(a)-(sec^(-1))(x)/(b)=sec^(-1)b-sec^(-1)a

lim_(x rarr0)(sec x-1)/(x^(2))

Is sec^(-1) (-x) = pi - sec^(-1) x , |x| ge 1 ?

lim_(x rarr0)(sec x-1)/(x^(2)(sec x+1)^(2))=

(d)/(dx)[sqrt((sec x-1)/(sec x+1))]=

int(tan x+sec x-1)/(tan x-sec x+1)dx

f(x)=[x tan^(-1)x+sec^(-1)((1)/(x)),x in(-1,1)-{0} and (pi)/(2), if x=0, then f'(0) is

Prove that (sec8x-1)/(sec4x-1)=(tan8x)/(tan2x)

lim_(h rarr0)(sec(x+h)-sec x)/(h)=sec x tan x