Home
Class 11
MATHS
Let f(x)={{:(x^(2)+1,, x <= 2),(x +k, ,x...

Let `f(x)={{:(x^(2)+1,, x <= 2),(x +k, ,x > 2) :}` and `lim_(xrarr2)f(x)` exist, then the value of `k` is
Select one:
a. `(1)/(2)`
b. `5`
c. `4`
d. `3`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={(ax+2, x 1):} , If lim_(x rarr1)f(x) exist then value of a is :

f(x)=(3x^(2)+ax+a+1)/(x^(2)+x-2) and lim_(x rarr-2)f(x) exists.Then the value of (a-4) is

Let f(x)={{:(4x-5",",xle2),(x-a",",xgt2.):} If lim_(xrarr2)f(x) exists then find the value of a.

Let f(x)={{:(1+(x)/(2k),0ltxlt2),(kx,2lexlt4):} If lim_(xto2)f(x) exists, then what is the value of k?

Let f(x)={{:(1+x^(2)",",0lexle1),(2-x",",xgt1.):} Show that lim_(xrarr0)f(x) does not exist.

Let f(x)={:{(x^(2)-1",",xle1),(-x^(2)-1",",xgt1.):} "Find"lim_(xrarr1)f(x).

Let f(x)={{:((|x|)/(x)",",xne0),(2",",x=0.):} Show that lim_(xrarr0)f(x) does not exist.

Let f(x)=(sqrt(x+3))/(x+1) , then lim_(xrarr-3)f(x)

If f(x) =(sin (e^(x-2)-))/(log(x-1)) then lim_(xrarr2)f(x) is given by

Let f(x)={(x^2,x in Z),((k(x^2-4))/(2-x),x notinZ):} Then, lim_(xrarr2) f(x)