Home
Class 12
MATHS
If cos^(2)x+sinx+1=0, then the value of ...

If `cos^(2)x+sinx+1=0`, then the value of x lies in the interval

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(cosx)sin x ge 2 and 0le xle 3pi , then the value of sinx lies in the interval (0, (sqrta-b)/(2)] then value of a-b is

If (dy)/(dx) = (2^(x)y + 2^(y).2^(x))/(2^(x) + 2^(x+y) log_(e)2), y(0) = 0 , then for y = 1, the value of x lies in the interval :

If 4{x)=x+[x];x>0, then the value of x which satisfies,lies in the interval

The principle value of sin^(-1)x lies in the interval

(|x|-1)/(|x|-2)<=0 then x lies in the interval

(|x|-1)/(|x|-2) <= 0 then x lies in the interval

If x^(2)-1 =0 then x lies in the interval set

If cos^(-1)|sinx|gesin^(-1)|sinx| , then the number of integral values of x in the interval x in [0, 3pi] are

If cos^(-1)|sinx|gesin^(-1)|sinx| , then the number of integral values of x in the interval x in [0, 3pi] are

The principal value of sin^(-1)x lies in the interval