Home
Class 12
MATHS
If x=t^3+t+5 & y=sint then (d^2y)/(dx^2)...

If `x=t^3+t+5` & `y=sint` then `(d^2y)/(dx^2)=` `(a)` `-((3t^2+1)sint+6tcost)/((3t^2+1)^3)` (b) `((3t^2+1)sint+6tcost)/((3t^2+1)^3)` `(c)` `-((3t^2+1)sint+6tcost)/((3t^2+1)^2)` (d) `(cost)/(3t^2+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a(t-sint), y=a(1-cost) then find (d^2y)/(dx^2) .

If x=a(t-sint), y=a(1-cost) then find (d^2y)/(dx^2) .

If x =a (t+sint) and y=a (1-cost) then (d^(2)y)/(dx^(2))

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= (a) -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)

If x=a t^2,y=2a t , then (d^2y)/(dx^2) is equal to (a) -1/(t^2) (b) 1/(2a t^2) (c) -1/(t^3) (d) 1/(2a t^3)

x = t cos t , y = t + sint . Then (d^2x)/(dy^2) at t = pi/2

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)

If x = e^(t)sint, y =e^(t)cost then (d^2y)/(dx^2) at t = pi is