Home
Class 11
MATHS
साबित करें कि एक तलीय बिन्दु (0, 4, 1), ...

साबित करें कि एक तलीय बिन्दु (0, 4, 1), (2, 3, -1), (4, 5, 0) तथा (2, 6, 2) एक वर्ग के शीर्ष है।

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the points : (0,4,1),(2,3,-1),(4,5,0) and (2,6,2) are vertices of square.

Evaluate |(-1, 0,0),(2,3,0),(-6,-4,5)|

Show that i) [[5 , (-1)],[ 6, 7]][[2, 1],[ 3 ,4]] ne[[2 , 1 ],[3 , 4]][[5, (-1)],[ 6 ,7]] ii) [[1, 2 , 3],[ 0 , 1, 0],[ 1 , 1, 0]][[(-1), 1, 0],[ 0, (-1), 1],[ 2, 3, 4]] ne[[(-1), 1, 0],[ 0, (-1), 1],[ 2, 3, 4]] [[1 , 2, 3],[ 0, 1, 0],[ 1, 1, 0]] .

|{:(" "2," "0," "-1),(-3," "5," "2),(" "4," "-3," "6):}|

ABCD is a trapezium in which AB parallel to DC and its diagonals intersect at P. If AP = (3x - 1) cm, PC = (5x - 3) cm, BP = (2x + 1) cm and PD = (6x - 5) cm, then the length of DB is: ABCD एक समलम्ब है जिसमें AB, DC के समानांतर है तथा इसके विकर्ण P पर एक दूसरे को काठते हैं | यदि AP = (3x - 1) सेमी, PC = (5x - 3) सेमी, BP = (2x + 1) सेमी तथा PD = (6x - 5) सेमी है, तो DB की लंबाई क्या होगी ?

If A=[(2, 0,-3),( 4, 3, 1),(-5, 7, 2)] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is (a) [(2, 2,-4 ),(2, 3, 4),(-4, 4, 2)] (b) [(2, 4,-5),( 0, 3, 7),(-3, 1, 2)] (c) [(4, 4,-8),( 4, 6, 8),(-8, 8, 4)] (d) [(1, 0 ,0 ),(0 ,1 ,0),( 0, 0, 1)]

If A=[(2, 0,-3),( 4, 3, 1),(-5, 7, 2)] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is (a) [(2, 2,-4 ),(2, 3, 4),(-4, 4, 2)] (b) [(2, 4,-5),( 0, 3, 7),(-3, 1, 2)] (c) [(4, 4,-8),( 4, 6, 8),(-8, 8, 4)] (d) [(1, 0 ,0 ),(0 ,1 ,0),( 0, 0, 1)]

Show that(i) [[5,-1],[ 6 ,7]][[2, 1],[ 3 ,4]]!=[[2, 1],[ 3, 4]][[5,-1],[ 6, 7]] (ii) [[1, 2, 3],[ 0, 1, 0],[ 1, 1, 0]][[-1, 1, 0],[ 0,-1, 1],[ 2, 3, 4]]!=[[-1, 1, 0],[ 0,-1, 1],[ 2, 3, 4]][[1 ,2 ,3],[ 0, 1, 0],[ 1, 1, 0]]