Home
Class 11
MATHS
If |tanA|lt1and |A|is acute, then (sqrt...

If `|tanA|lt1and |A|`is acute, then
`(sqrt(1+sin2A)+sqrt(1-sin2A))/(sqrt(1+sin2A)-sqrt(1-sin2A))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If |tanA|<1 and |A| is acute, then (sqrt(1+sin2A)+(sqrt(1-sin2A)))/(sqrt(1+sin2A)-(sqrt(1-sin2A))) is equal to

(sqrt(1+sin2A)+sqrt(1-sin2A))/(sqrt(1+sin2A)-sqrt(1-sin2A)) If |tan A|<1 and |AI

The value of (sqrt(1 + sin x )+sqrt(1 - sin x))/(sqrt(1 + sin x )-sqrt(1-sin x)) is equal to

If -(pi)/(4)lt A lt (pi)/(4) , then (sqrt(1+sin 2 A)+sqrt(1-sin 2 A))/(sqrt(1+sin 2 A)-sqrt(1-sin 2 A)) is equal to

(sqrt(1+sin 2A)+sqrt(1-sin 2A) )/(sqrt(1 + sin 2A)-sqrt(1-sin2A)) If |tan A| < 1 , and | A I

(sqrt(1+sin 2A)+sqrt(1-sin 2A) )/(sqrt(1 + sin 2A)-sqrt(1-sin2A)) If |tan A| < 1 , and | A I

2 (sin A) / (2) = - sqrt (1 + sin A) -sqrt (1-sin A)

Find the value of (sqrt(1+sin 2A)+sqrt(1-sin 2 A))/(sqrt(1 + sin 2A)-sqrt(1-sin 2 A)) , When |tan A| lt 1 and |A| is acute.

sqrt((1-sin A)/(1+sin A))+sqrt((1+sin A)/(1-sin A))=2sec A