Home
Class 12
MATHS
sin[cos^(-1)x]=cos[sin^(-1)x]...

`sin[cos^(-1)x]=cos[sin^(-1)x]`

Promotional Banner

Similar Questions

Explore conceptually related problems

The soluation set of inequality (sin x+cos^(-1)x)-(cos x-sin^(-1)x)>=(pi)/(2) is equal to

u=sin(m cos^(-1)x),v=cos(m sin^(-1)x), provethat (du)/(dv)=sqrt((1-u^(2))/(1-v^(2)))

If 0 < cos^(-1)x < 1 and 1+sin(cos^(-1)x)+sin^2(cos^(-1)x)+sin^3(cos^(-1)x)....+oo=2, then the value of 12 x^2 is____.

If 0 < cos^-1(x) <1 and 1+sin(cos^(-1)x)+sin^2(cos^(-1)x)+sin^3(cos^(-1)x) + ..... =2 then the value of 12 x^2 is____

If 0

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

What is the value of (d)/(dx)[sin^(-1){cos(sin^(-1)x)}+cos^(-1) {sin(cos^(-1)x)}]?

sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x)) = _______

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))