Home
Class 12
MATHS
Let f(x)=log2(|sinx|+|cosx|). the range ...

Let `f(x)=log_2(|sinx|+|cosx|)`. the range of `f(x)` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=log_(2)(|sin x|+|cos x|). the range of f(x) is :

f(x)=sinx+cosx+3 . find the range of f(x).

f(x)=sinx+cosx+3 . find the range of f(x).

f(x)=sinx+cosx+3 . find the range of f(x).

f(x)=sinx+cosx+3 . find the range of f(x).

The range of f(x)=cosx-sinx is

If f(x)=log(cosx), then the value of f''(x) is-

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is