Home
Class 12
MATHS
IF xsqrt(1+y)+ysqrt(1+x)=0, show that, ...

IF `xsqrt(1+y)+ysqrt(1+x)=0`, show that,
`(d^2y)/(dx^2)=2/(1+x)^3`.

Promotional Banner

Similar Questions

Explore conceptually related problems

IF xsqrt(1+y)+ysqrt(1+x)=0 , show that, dy/dx=-1/(1+x)^2

If xsqrt(1 + y) + ysqrt(1 + x) = 0 show that (dy)/(dx) = - 1/(1 + x)^2

If xsqrt(1+y)+ysqrt(1+x)=0, prove that (dy)/(dx)=-1/((1+x)^2)

If xsqrt(1+y)+ysqrt(1+x)=0, prove that (dy)/(dx)=-1/((x+1)^2)

If xsqrt(1+y)+ysqrt(1+x)=0, prove that (dy)/(dx)=-1/((x+1)^2)

If y=sin^(-1)x , show that (d^2y)/(dx^2)=x/((1-x^2)^(3//2))

"If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

"If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

"If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).