Home
Class 12
MATHS
Find (dy)/(dx) when : x=cos^(-1)(8t^(...

Find `(dy)/(dx)` when :
`x=cos^(-1)(8t^(4)-8t^(2)+1)`,
`y=sin^(-1)(3t-4t^(3))[0 lt t lt (1)/(2)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) where x=cos^(-1)(8t^(4)-8t^(2)+1) and y=sin^(-1)(3t-4t^(3)),[0lt t lt(1)/(2)] .

Find (dy)/(dx) where x= cos^(-1)(8t^4-8t^2+1) y =sin^(-1)(3t-4t)^3,[0

Find (dy)/(dx), when x=(cos^(-1)1)/(sqrt(1+t^(2))) and y=(sin^(-1)t)/(sqrt(1+t^(2))),t in R

Find (dy)/(dx), when x=cos^(-1)(1)/(sqrt(1+t^(2))) and y=sin^(-1)(t)/(sqrt(1+t^(2))),t in R

FInd (dy)/(dx) If x=2t^(2)+17t-1,y=3t^(4)-8t^(2)+9

Find (dy)/(dx) when : tan y=(2t)/(1-t^(2)), sin x=(2t)/(1+t^(2))

Find (dy)/(dx):x=a{cos t+(1)/(2)log tan^(2)(t)/(2)} and y=a sin t

If x=cos ^(-1) (4t^(3) -3t) ,y =tan ^(-1)((sqrt( 1-t^(2)))/( t)),then (dy)/(dx)=

Find (dy)/(dx) when : x=a(2t+sin2t), y=a(1-cos2t)