Home
Class 11
MATHS
" Prove: "sin^(-1)(2x sqrt(1-x^(2)))=2si...

" Prove: "sin^(-1)(2x sqrt(1-x^(2)))=2sin^(-1)x,|x|<(1)/(sqrt(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : sin^(-1) (2x sqrt(1-x^(2)))= 2 sin^(-1) x, - 1/(sqrt(2)) le x le 1/(sqrt(2))

Prove the following : sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,x in[-1/sqrt2,1/sqrt2]

Prove that : sin^(-1) (2x sqrt(1-x^(2)) ) = 2 sin^(-1) x , -1/(sqrt(2))le x le 1/(sqrt(2)

Prove the following: sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))

Prove that sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((x+1)/(sqrt(x^(2)+2x+2)))=tan^(-1)(x^(2)+x+1)

Prove that cot^(-1)((1+sqrt(1-x^(2)))/x)=(1)/(2)sin^(-1)x

Prove that tan^(-1)((x)/(1+sqrt(1-x^(2))))=(1)/(2)sin^(-1)x .

prove that tan^(-1)((x)/(1+sqrt(1-x^(2)))]=(1)/(2)sin^(-1)x

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

Prove that 2sin^(-1)x=sin^(-1)[2x sqrt(1-x^(2))]