Home
Class 11
MATHS
" Domain of "f(x)=ln(ax^(3)+(a+b)x^(2)+(...

" Domain of "f(x)=ln(ax^(3)+(a+b)x^(2)+(b+c)x+c)," where "a>0,b^(2)-4ac=0" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of f(x)=ln(a x^3+(a+b)x^2+(b+c)x+c), where a >0, b^2-4ac=0 , is

The domain of f(x)=ln(a x^3+(a+b)x^2+(b+c)x+c), where a >0, b^2-4ac=0 , is

The domain of f(x)=ln(a x^3+(a+b)x^2+(b+c)x+c), where a >0,b^2-4a c=0,i s(w h e r e[dot] represents greatest integer function).

The domain of f(x)=ln(a x^3+(a+b)x^2+(b+c)x+c), where a >0,b^2-4a c=0,i s(w h e r e[dot] represents greatest integer function).

If b^(2)-4ac=0,a>0 then the domain of the function f(x)=log(ax^(3)+(a+b)x^(2)+(b+c)x+c) is :

The value of 'c' in Rolle's theorem for f(x) = log ((x^(2) + ab)/(x(a+b))) in (a,b) where a gt 0 is

If the domain of f (x) =1/picos ^(-1)[log _(3) ((x^(2))/(3))] where, x gt 0 is [a,b] and the range of f (x) is [c,d], then :

Solve :2log_(x)a+log_(ax)a+3log_(b)a=0 where a>0,b=a^(2)x