Home
Class 12
MATHS
If int0^oo e^(-x^2) \ dx=sqrt(pi)/2, and...

If `int_0^oo e^(-x^2) \ dx=sqrt(pi)/2`, and `int_0^oo e^(-ax^2) \ dx, \ a>0` is (i) `sqrt(pi)/2` (ii) `sqrt(pi)/(2a)` (iii)`2sqrt(pi)/(a)` (iv) `1/2sqrt(pi/a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_ (0)^(oo) e^(-x^(2)) dx = (sqrt (pi))/(2), and int_ (0)^(oo) e^(-ax^(2) ) dx, a> 0 is (i) (sqrt (pi))/(2) (ii) (sqrt (pi))/(2a) (iii) 2 (sqrt (pi))/(a) (iv) (1)/(2) sqrt ((pi)/(a))

If int_(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int_(0)^(oo) e^(-ax^(2)) dx, a gt0 , s

If int_(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int_(0)^(oo) e^(-ax^(2)) dx, a gt0 , s

If int_(0)^(oo)e^(-x^(2))dx=(sqrt(pi))/(2), then int_(0)^(oo)e^(-ax^(2))dx where a>0 is: (A)(sqrt(pi))/(2) (B) (sqrt(pi))/(2a)(C)2(sqrt(pi))/(a) (D) (1)/(2)(sqrt((pi)/(a)))

int_0^(pi/2) cosx/sqrt(1+sinx)dx

int_0^(pi/2) cosx/sqrt(1+sinx)dx

Given that int_(-oo)^( oo)e^(-x^(2))dx=sqrt(pi) and f(t)=int_(-oo)^( oo)e^(-tx^(2))dx(t>0), then 2|(f'(t))/(sqrt(pi))times t^(3/2)| is

Given that int_(-oo)^( oo)e^(-x^(2))dx=sqrt(pi) and f(t)=int_(-oo)^( oo)e^(-tx^(2))dx(t>0) ,then 2|(f'(t))/(sqrt(pi))times t^(3/2)| is

If int_0^pi 1/(a+bcosx)dx=pi/sqrt(a^2-b^2) , then int_0^pi 1/(a+bcosx)^2dx is