Home
Class 9
MATHS
" 54."sin^(2)A cos^(2)B-cos^(2)A sin^(2)...

" 54."sin^(2)A cos^(2)B-cos^(2)A sin^(2)B=sin^(2)A-sin^(2)B

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : sin^(2)Acos^(2)B-cos^(2)Asin^(2)B=sin^(2)A-sin^(2)B

Prove that : sin^(2)Acos^(2)B-cos^(2)Asin^(2)B=sin^(2)A-sin^(2)B

sin^(2) A cos^(2)B + cos ^(2) A sin^(2) B + sin^(2) A sin^(2) B+ cos^(2) A cos^(2) B=

Prove: sin^2Acos^2B-cos^2Asin^2B=sin^2A-sin^2B

Prove that sin ^(2) A cos ^(2) B+cos ^(2) A sin ^(2) B+cos ^(2) A cos ^(2) B+sin ^(2) A sin ^(2) B=1

sin ^ (2) A cos ^ (2) B + cos ^ (2) A sin ^ (2) B + sin ^ (2) A sin ^ (2) B + cos ^ (2) A cos ^ (2) B =

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1 then prove that (i)sin^(2)A+sin^(2)B=2sin^(2)A sin^(2)B(ii)(cos^(4)B)/(cos^(2)A)+(sin^(4)B)/(sin^(2)A)=1

Prove that cos(A+B)cos(A-B)=cos^(2)A-sin^(2)B=cos^(2)B-sin^(2)A

(i) (1)/(sin^(2)a)-(1)/(sin^(2)B)=(cos^(2) a-cos^(2) B)/(sin^(2)a*sin^(2) B)

cos(A+B)*cos(A-B)= (a) sin^2A-cos^2B (b) cos^2A-sin^2B (c) sin^2A-sin^2B (d) cos^2A-cos^2B