Home
Class 11
MATHS
[" 2.Prove that the real valued function...

[" 2.Prove that the real valued function "f(x)=(x)/(e^(x)-1)+(x)/(2)+1" is an even function on "],[R backslash{0}.]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the real valued function f(x)=(x)/(e^(x)-1)+(x)/(2)+1 is an even function on R-{0}

P.T the real valued function f(x)= (x)/(e^(x)-1) + x/2 + 1 is an even function on R-{0} .

If the real valued function f(x)=(a^(x)-1)/(x^(n)(a^(x)+1)) is even then n equals

The value of k for which the function f(x)=((x)/(e^(x)-1)+(x)/(k)+1) is an even function

The domain of the real valued function f(x)=3e^sqrt(x^2-1)log(x-1) is

The real valued function f(x)=(a^x-1)/(x^n(a^x+1)) is even, then the value of n can be

The real valued function f(x)=(a^x-1)/(x^n(a^x+1)) is even, then the value of n can be