Home
Class 12
MATHS
Let I=(log3 4+log2 9)^2-(log3 4-log2 9)^...

Let `I=(log_3 4+log_2 9)^2-(log_3 4-log_2 9)^2` and `m=(0.8)(1+9^(log_3 8))^(log_(65) 5)` then `(l+m)` is divisible by

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that log_3 2=log_9 4=log_27 8

Prove that log_2 log_3 9=1

4^(log_9 3)+9^(log_2 4)=1 0^(log_x 83) , then x is equal to

4^(log_9 3)+9^(log_2 4)=1 0^(log_x 83) , then x is equal to

If (4)^(log_(9) 3)+(9)^(log_(2) 4)=(10)^(log_(x) 83) , then x is equal to

If (4)^(log_(9) 3)+(9)^(log_(2) 4)=(10)^(log_(x) 83) , then x is equal to

|{:(" "log_3 512," "log_4 3),(" "log_3 8," "log_4 9):}|