Home
Class 12
MATHS
If A, B , C are angles in a triangle, th...

If `A, B , C` are angles in a triangle, then the `sin ^(2)A+sin ^(2)B - sin ^(2) C =2 sin A sin B cos C`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B, C are angles in a triangle, then prove that: sin^(2) A + sin^(2) B - sin^(2) C =2 sin A sin B cos C

sin ^ (2) A + sin ^ (2) B-sin ^ (2) C = 2sin A sin B cos C

If A, B , C are angles in a triangle, then prove that sin ^(2)A+ sin ^(2)B+sin^(2)C=2+2 cos A cos B cos C

If A B C are the angles of a triangle then sin ^(2) A+sin ^(2) B+sin ^(2) C-2 cos A cos B cos C

If A, B, C are angles of a triangle, then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC=?

If A, B, C are the angles of a triangle such that sin^(2)A+sin^(2)B=sin^(2)C , then

If A, B, C are the angles of a triangle such that sin^(2)A+sin^(2)B=sin^(2)C , then

If A, B, C are the angles of a triangle such that sin^(2)A+sin^(2)B=sin^(2)C , then

If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C is equal to