Home
Class 12
MATHS
If A+B+C=(pi)/(2), then prove that sin ^...

If `A+B+C=(pi)/(2)`, then prove that `sin ^(2) A+ sin ^(2) B + sin ^(2) C=1-2 A sin B sin C `.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=0 , then prove that sin 2A + sin 2B+ sin 2C=-4sin A sin B sin C .

If A + B + C = 180^(@) , prove that sin^(2)A + sin^(2)B - sin^(2)C = 2 sin A sin B cos C

If A+B+C=(pi)/(2) , then prove that cos 2A + cos 2B + cos 2C=1+4 sin A sin B sin C .

If A,B, C are angles in a triangle, then prove that: sin^(2) A + sin^(2) B - sin^(2) C =2 sin A sin B cos C

If A+B+C=pi, prove that sin^(2)A-sin^(2)B+sin^(2)C=2sinA cos B sinC

If A + B + C =pi/2 , prove that : sin^2 A +sin^2 B+sin^2 C= 1-2 sin A sin B sin C .

If A+B+C =180^(@) then prove that sin 2A + sin 2B+ sin 2C = 4 sin A sin B sin C

If A + B + C = (pi)/(2) , prove that sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C

If A+B+C=pi, " prove that sin"^(2) ""A/2+sin^(2) ""B/2+sin^(2) ""C/2=1-2 sin ""A/2 sin ""B/2 sin ""C/2

If A + B + C = 180^@ , then prove that sin 2 A+ sin 2B + sin 2C = 4 sin A sin B sin C