Home
Class 11
MATHS
सिद्ध कीजिए कि (i) sin. (5pi)/18 -...

सिद्ध कीजिए कि
(i) ` sin. (5pi)/18 - cos. (4pi)/9 = sqrt(3)sin. pi/9`
(ii) ` cos. ((3pi)/4+A) - cos ((3pi)/4 - A) = - sqrt(2) sin A . `

Promotional Banner

Similar Questions

Explore conceptually related problems

cos ((3pi)/( 4) + x) - cos((3pi)/( 4) -x) =- sqrt2 sin x

cos ((3pi)/( 4) + x) - cos((3pi)/( 4) -x) =- sqrt2 sin x

cos ((3pi)/( 4) + x) - cos((3pi)/( 4) -x) =- sqrt2 sin x

cos((3pi)/(4)+x)-cos ((3pi)/(4)-x)=-sqrt(2) sin x

Prove that: i) sin(5pi)/(18) - cos(4pi)/(9) = sqrt(3)sinpi/9 ii) cos(3pi)/4+A-cos((3pi)/(4)-A)=-sqrt(2)sinA

Prove that: i) sin(5pi)/(18) - cos(4pi)/(9) = sqrt(3)sinpi/9 ii) cos(3pi)/4+A-cos((3pi)/(4)-A)=-sqrt(2)sinA

prove that : sin((5pi)/18)-cos((4pi)/9)=sqrt(3)sin(pi/9)

Prove that cos ((3pi)/(4)+x)-cos ((3pi)/(4)-x)=-sqrt2 sin x

sin ((5 pi) / (18)) - cos ((4 pi) / (9)) = sqrt (3) sin ((pi) / (9))

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=-sqrt(2)sin x