Home
Class 11
MATHS
" (D) when show that "|z=w|^(2)S(|d|-|u|...

" (D) when show that "|z=w|^(2)S(|d|-|u|)^(2)+(arg z-arp cdots)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z| le1 and |w| lt 1 , then shown that |z - w|^(2) lt (|z| - |w|)^(2)+ (arg z - arg w)^(2)

If |z|<=1,|w|<=1 , then show that |z- w|^2<=(|z|-|w|)^2+(argz-argw)^2

If |z|<=1 and | omega|<=1, show that |z-omega|^(2)<=(|z|-| omega|)^(2)+(argz-arg omega)^(2)

If |z| <= 1 and |omega| <= 1, show that |z-omega|^2 <= (|z|-|omega|)^2+(arg z-arg omega)^2

If |z| <= 1 and |omega| <= 1, show that |z-omega|^2 <= (|z|-|omega|)^2+(arg z-arg omega)^2

If |z| <= 1 and |omega| <= 1, show that |z-omega|^2 <= (|z|-|omega|)^2+(arg z-arg omega)^2

If the complex number Z_(1) and Z_(2), arg (Z_(1))- arg(Z_(2)) =0 . then show that |z_(1)-z_(2)| = |z_(1)-z_(2)| .

If the complex number Z_(1) and Z_(2), arg (Z_(1))- arg(Z_(2)) =0 . then show that |z_(1)-z_(2)| = |z_(1)|-|z_(2)| .

If the complex number Z_(1) and Z_(2), arg (Z_(1))- arg(Z_(2)) =0 . then show that |z_(1)-z_(2)| = |z_(1)|-|z_(2)| .

z_(1) and z_(2) are two complex number such that |z_(1)|=|z_(2)| and arg (z_(1))+arg(z_(2))=pi , then show that z_(1)=-barz_(2)