Home
Class 11
MATHS
If z = 3 + 2i, prove that z^(2) - 6z + 1...

If `z = 3 + 2i`, prove that `z^(2) - 6z + 13 = 0` and hence deduce that `3z^(3) - 13z^(2) + 9z + 65 = 0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If z = 2-3i , then show that z^2 - 4z + 13 = 0

If z = 2-3i , show that z^2- 4z+13= 0 and hence find the value of 4z^3 - 3z^2 + 169 .

If z=2-3i show that z^(2)-4z+13=0 and hence find the value of 4z^(3)-3z^(2)+169

If z = 2 + i, prove that z^(3) + 3z^(2) - 9z + 8 = (1 + 14i) .

If z=2-3i , show that z^(2)-4z+13=0

If z=2-3i, then show that z^(2)-4z+13=0 .

If z=2-3i show that z^2-4z+13=0 and hence find the value of 4z^3-3z^2+169.

If z=2-3i show that z^2-4z+13=0 and hence find the value of 4z^3-3z^2+169.

If z=3-2i then show that z^(2)-6z+13=0 Hence find the value of z^(4)-4z^(3)+6z^(2)-4z+17

If z=1+2i , show that z^(2)-2z+5=0 . Hence find the value of z^(3) +7z^(2)-z+16 .