Home
Class 12
MATHS
" fc) "((a+b+c)^(2))/(a^(2)+b^(2)+c^(2))...

" fc) "((a+b+c)^(2))/(a^(2)+b^(2)+c^(2))=(a+b+c)/(a-b+c)

Promotional Banner

Similar Questions

Explore conceptually related problems

((a+b)^(2))/((b-c)(c-a))+((b+c)^(2))/((a-b)(c-a))+((c+a)^(2))/((a-b)(b-c))

Prove that |{:((b+c)^(2), a^(2), bc),((c+a)^(2), b^(2), ca),((a+b)^(2), c^(2), ab):}|= (a-b) (b-c)(c-a)(a + b+c) (a^(2) + b^(2) + c^(2)) .

Show that |((b+c)^2,a^2,bc),((c+a)^2,b^2,ca),((a+b)^2,c^2,ab)|=(a^2+b^2+c^2)(a+b+c)(a-b)(b-c)(c-a).

Show that: abs(((b+c)^2,a^2,bc) , ((c+a)^2,b^2,ca) , ((a+b)^2,c^2,ab))=(a^2+b^2+c^2)(a+b+c)(b-c)(c-a)(a-b)

Show that |(b+c,a,a^(2)),(c+a,b,b^(2)),(a+b,c,c^(2))|=(a+b+c)(a-b)(b-c)(c-a)

Prove: |((b+c)^2, a^2, b c) ,((c+a)^2, b^2 ,c a),( (a+b)^2, c^2, a b)|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2) .

(a^(2)-b^(2)-2bc-c^(2))/(a^(2)+b^(2)+2ab-c^(2)) is equivalent to (a-b+c)/(a+b+c)( b) (a-b-c)/(a-b+c)(c)(a-b-c)/(a+b-c)(d)(a+b+c)/(a-b+c)

Given, a^(2) =b+c, b^(2)=c + a " & " c^(2) = a + b or (a^(2))/(b+c) = (b^(2))/(c+a) = (c^(2))/(a+b)=1 find (a)/(1+a) + (b)/(1+b) + (c )/(1+c) = ?

Prove that 2b^(2)c^(2) +2c^(2)a^(2) +2a^(2)b^(2) -a^(4)-b^(4)-c^(4)= (a+b+c) (b+c-a) (c+a-b) (a+b-c)