Home
Class 9
MATHS
If a^(3-x).b^(5x) = a^(5+x).b^(3x), then...

If `a^(3-x).b^(5x) = a^(5+x).b^(3x)`, then show that `x log (b/a) = log a`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(2-x).b^(5x) = a^(x+3).b^(3x) , then show that x log (b/a) = 1/2 loga .

If a^(2-x).b^(5x)=a^(x+3).b^(3x) , show that x log (b/a)=1/2log a

if a^(3-x)b^(5x)=a^(x+5)b^(3x), then the value of x log((b)/(a)) is : b (i) loga (ii) logb (iii) logx (iv) 1

If int(3x+4)/(5x-7)dx=ax+b.log(5x-7)+c , then (a, b)-=

If int(2x+5)/(5x+1)dx=ax+b log(5x+1)+c , then (a, b)-=

If a^(2) = log x, b^(3) = log y and (a^(2))/(2) - (b^(3))/(3) = log c , find c in terms of x and y.

If y=log_(5)(log_(5)x)+10^(3log_(10)x), show that (dy)/(dx)=(1)/(x log_(5)x(log_(e)5)^(2))+3x^(2)

If (log)_3x=a and (log)_7x=b , then which of the following is equal to (log)_(21)x ? a b (b) (a b)/(a^(-1)+b^(-1)) 1/(a+b) (d) 1/(a^(-1)+b^(-1))

Express "log"(3sqrt(a^(2)))/(b^(5)sqrt(x))" or "(a^(2//3))/(b^(5)sqrt(c)) in terms of log a, log b and log c.