Home
Class 12
MATHS
The number of values of x , x I [-2,3] w...

The number of values of `x , x I [-2,3]` where `f (x) =[x ^(2)] sin (pix)` is discontinous is (where [.] denotes greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix) is discontinous is (where [.] denotes greatest integer function)

f(x)=[(x^(3)+4x)/(2)] is discontinuous at x equal to (where [.] denotes the greatest integer function)

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

int _(0)^(2) x ^(3) [1+ cos ""(pix)/(2)] dx is (where [**] denotes the greatest integer function)

If f(x)=[2x], where [.] denotes the greatest integer function,then