Home
Class 12
MATHS
The value of lim(n to oo)(1)/(n).sum(r=1...

The value of `lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2)))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) equals

lim_(n to oo)(1)/(2)" " sum_(r=+1)^(2n) (r)/(sqrt(n^(2)+r^(2))) equals

The value of lim_(n rarr oo)sum_(r=1)^(n)(1)/(sqrt(n^(2)-r^(2)x^(2))) is

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

Lt_(n rarr oo) sum_(r=1)^(n)[(1)/(sqrt(4n^(2) - r^(2)))]

Evaluate lim _( n to oo) sum_( r =1) ^(n -1) (1)/(sqrt(n ^(2) -r ^(2)))

"lim_(n rarr oo)(1)/(n){sum_(r=1)^(n)e^((r)/(n))}=

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :