Home
Class 12
MATHS
x=te^(t),y=1+log t" तो "(dy)/(dx)" निलाल...

x=te^(t),y=1+log t" तो "(dy)/(dx)" निलाले "

Promotional Banner

Similar Questions

Explore conceptually related problems

x=e^(t)log t y=t log t then dy/dx

If x=te^(t) and y=1+log t, find (dy)/(dx)

If " "x=t^(2),y=t^(3) ," then "(dy)/(dx)" at "t=-1" is "

If x=t^(2) and y=log t , find (dy)/(dx) .

y=te^(-t)+cos t Find (dy)/(dt)

If x= t log t,y = (log t)/t , find (dy)/(dx) when t=1

If x = log t^2 , y = log t^3 , then (dy)/(dx) is

If x=cos^(-1)t,y=log(1-t^(2))," then "((dy)/(dx))" at "t=(1)/(2) is

x=a(t-sin t),y=a(1+cos t) then (dy)/(dx) =