Home
Class 11
MATHS
Let x=(log(sin30^0)cos30^0)(log(cos30^@)...

Let `x=(log_(sin30^0)cos30^0)(log_(cos30^@)cot30^0)(log_(cot30^0)cosec30^0)` and `y=3^(log_(cot30^0) (|x|+3))` then the value of `y` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let x =(log_(sin 30^(@))cos 30^(@))(log_(cos30^(@))cot30^(@)) (log_(cot 30^(@))coses 30^(@)) and y = 3^(log_(cot 30^(@))(|x|+3)) then value of y is equal to-

Let x =(log_(sin 30^(@))cos 30^(@))(log_(cos30^(@))cot30^(@)) (log_(cot 30^(@))coses 30^(@)) and y = 3^(log_(cot 30^(@))(|x|+3)) then value of y is equal to-

Let x =(log_(sin 30^(@))cos 30^(@))(log_(cos30^(@))cot30^(@)) (log_(cot 30^(@))coses 30^(@)) and y = 3^(log_(cot 30^(@))(|x|+3)) then value of y is equal to-

(log)_(sin30^(@)cos60^(@))=1

If log_(30)3=a and log_(30)5=b find the value of log_(30)8

(cos75^0+isin75^0)/(cos30^0+isin30^0)=

prove: ((sin0^@+sin60^@)(cos60^@+cot45^@))/((cot60^@+tan30^@)(cosec30^@-cosec90^@))=9/8

What is the value of (sin30^(@)+cos30^(@))/(cos30^(@)-sin30^(@)) ?