Home
Class 11
MATHS
The possible value of x satisfying the e...

The possible value of x satisfying the equation `log_2(x^2-x)log_2((x-1)/x)+(log_2 x)^2=4` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

The possible value(s) of x, satisfying the equation log_(2)(x^(2)-x)log_(2) ((x-1)/(x)) + (log_(2)x)^(2) = 4 , is (are)

The possible value(s) of x, satisfying the equation log_(2)(x^(2)-x)log_(2) ((x-1)/(x)) + (log_(2)x)^(2) = 4 , is (are)

The possible value(s) of x, satisfying the equation log_(2)(x^(2)-x)log_(2) ((x-1)/(x)) + (log_(2)x)^(2) = 4 , is (are)

Number of real values of x satisfying the equation log_(2)(x^(2)-x)*log_(2)((x-1)/(x))+(log_(2)x)^(2)=4 is (a)0(b)2(c)3(d)7

The value of x satisfying the equation 2log_(3)x+8=3.x log_(9)4

The value of x satisfying the equation log_(x+1)(2x^2+7x+5)+log_(2x+5)(x+1)^2=4 is

The value of x :satisfying the equation log_(4)(2log_(2)x)+log_(2)(2log_(4)x)=2 is