Home
Class 11
MATHS
If logsqrt2 sqrtx+log2 x log4(x^2)+log8(...

If `log_sqrt2 sqrtx+log_2 x log_4(x^2)+log_8(x^3)+log_16(x^4)=40` then x is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(sqrt(2)) sqrt(x) +log_(2)x + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

If log_(sqrt(2)) sqrt(x) +log_(2) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

If log_(sqrt(2)) sqrt(x) +log_(2)(x) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

If log_2 log_3 log_4 (x+1) =0, then x is :-

Solve : 3log_x(4)+ 2log_(4x)4+3log_(16x)4=0

Solve : 3log_x(4)+ 2log_(4x)4+3log_(16x)4=0

Solve : 3log_x(4)+ 2log_(4x)4+3log_(16x)4=0

If log_(8)(log_(4)(log_(2)x))=0 then x^(-(2)/(3)) equals

sqrt(log_(2)(2x^(2))log_(4)(16x))=log_(4)x^(3)

If "log"_(2)x + "log"_(4)x + "log"_(16)x = (21)/(4) , then x equals to