Home
Class 12
MATHS
If A=[[1, -1, 3], [2, 3, 4]], then R1 to...

If `A=[[1, -1, 3], [2, 3, 4]]`, then `R_1 to R_1 -R_2` on A gives

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[1, 0, 2], [2, 4, 5]] , then 3R_1 on A gives

If A=[[1, 0], [-1, 3]] , then R_1 harr R_2 on A gives

If A=[[3, 1], [4, 5]] , then R_1 harrR_2 on A gives

If A=[[1, 2, -1], [3, -2, 5]] , then first R_1 harr R_2 and then C_1 to C_1+2C_3 on A gives

if A=[[2,-3,3],[2,2,3],[3,-2,2]] then C_2 +2C_1 and then R_1+R_3 gives

[[1,-1],[2,3]] = [[1,0],[0,1]] A, R_2 rarr R_2 - 2R_1 gives

If A=[[1,2,-1],[3,-2,5]],then R_1 harr R_2 and C_1 rarr C_1 + 2C_3 gives

[(1,-1),(2,3)]=[(1,0),(0,1)] A,R_(2) rarr R_(2)-2R_(1) gives

Let A = {1,2,3,4} and R be a relation in A given by R = {(1,1) (2,2) (3,3) (4,4) (1,2) (2,1) (3,1) (1,3)} . Then R is

On using clementary row operation R_1 to R_1-3 R_2 in the following matrix equation [[4,2],[3,3]]=[[1,2],[0,3]][[2,0],[1,1]] we have,