Home
Class 11
MATHS
[f(x)={[(1-sqrt(2)sin x)/(pi-4x)," if "x...

[f(x)={[(1-sqrt(2)sin x)/(pi-4x)," if "x!=(pi)/(4)],[aquad ," if "x=(pi)/(4)" is continuous at "]],[" If "],[x=(pi)/(4)" then "a=]

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) ={{:((1-sqrt(2)sin x)/(pi -4x),"if "x ne (pi)/(4)),("k","if "x=(pi)/(4)):} continous at x=(pi)/(4) , then K=

If f (x) = {{:((1- sqrt2sin x )/(pi - 4 x )",",, x ne (pi)/(4)),(a" "",",,x = (pi)/(4)):} is continuous at x = (pi)/(4) , then a =

If f(x) = {{:(1 - sqrt(2 sinx)/(pi - 4r ) " if " x ne (pi)/(4)),(a " if " x = (pi)/(4)):} continuous at (pi)/(4) then a =

If f(x)={{:((1-sqrt2sinx)/(pi-4x)",",ifxne(pi)/(4)),(a",",if x=(pi)/(4)):} in continuous at (pi)/(4) , then a is equal to :

If f(x)={{:((1-sqrt2sinx)/(pi-4x)",",ifxne(pi)/(4)),(a",",if x=(pi)/(4)):} in continuous at (pi)/(4) , then a is equal to :

If f(x) = {((1-sqrt2sinx)/(pi-4x), x ne pi/4),(a, x = pi/4):} is continuous at pi/4 , then a =

if f(x)=(sqrt(2)cos x-1)/(cot x-1),x!=(pi)/(4) Find the value of f((pi)/(4)) so that f(x) becomes continuous at x=(pi)/(4)