Home
Class 12
MATHS
If 3^(x+1)=6^(log(2)3), then x is equal ...

If `3^(x+1)=6^(log_(2)3)`, then x is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If 3^(log_(2)x)=4^(log_(2)x-1) then x is equal to

Match the column Column I, Column II If x=3,t h e n(log)_4(2(log)_3(1+(log)_2(1+3Log_3x))) is equal to, p. 3 If x=100 , then 3^((log)_3logsqrt(x))-logx+log^2x is equal to, q. 1 If one of the root of the equation 2((log)_xsqrt(5))^2-3(log)_x(a)+1=0 is sqrt(5) , then the other root is, r. 1/2 If (log)_2(4. 3^x-6)-(log)_2(9^x-6)=1, then x is equal to, s. 5

If 2^(x)*3^(x+4)=7^(x), then x is equal to (A) (4log3)/(log7-log6)(B)(4log3)/(log6-log7)(C)(2log3)/(log7-log6)(D) none of these

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

If log_(2)[log_(3)(log_(2)x)]=1 , then x is equal to

Let A is number of value of 'x' satisfying equation |x-3|=2x-5 and B is the value of 'x' satisfying the equation |log_((1)/(3))2|=log_((1)/(3))x, then A+B is equal to

If log_(3)x=-2{ then backslash|x is equal to a.-9b-8c.-6d.(1)/(9)