Home
Class 12
MATHS
" If "y=e^(x)+e^(-x)," prove that "(dy)/...

" If "y=e^(x)+e^(-x)," prove that "(dy)/(dx)=sqrt(y^(2)-4)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=

If y=e^(x)cos x, prove that (dy)/(dx)=sqrt(2)e^(x)cos(x+(pi)/(4))

If y,=e^(x)cos x, prove that (dy)/(dx),=sqrt(2)e^(x)cos(x+(pi)/(4))

If y=(e^(x)-e^(-x))/(e^(x)+e^(-x)), prove that (dy)/(dx)=1-y^(2)

If (x-y)e^((x)/(x-y))=a, prove that (dy)/(dx)+x=2y

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2