Home
Class 10
MATHS
cos x(dy)/(dx)+y*sin x=sec^(2)x...

cos x(dy)/(dx)+y*sin x=sec^(2)x

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the differential equation sin x(dy)/(dx)+y cos x=2sin^(2)x cos x

Find (dy)/(dx) , when If y = (cos x + sinx)/(cos x - sinx) , show that (dy)/(dx) = sec^(2) (x + (pi)/(4)) .

The solution of sec x(dy)/(dx) = y + sin x is

cos y (dy) / (dx) + sin y cos x = sin x cos x

If y= sin (sin x) then show that, (d^(2)y)/(dx^(2)) + (tan x) (dy)/(dx) + y cos^(2)x = 0

The solution of (dy)/(dx) + y cos x = sin x cos x is

Solving the following differentia equation: sin x(dy)/(dx)+cos x*y=cos x*sin^(2)x

If y=sin(sin x), prove that (d^(2)y)/(dx^(2))+tan x(dy)/(dx)+y cos^(2)x=0

cos ^ (3) x (dy) / (dx) + y cos x = sin x