Home
Class 12
MATHS
If cos theta=a/(b+c), cos phi= b/(a+c) a...

If `cos theta=a/(b+c), cos phi= b/(a+c)` and `cos psi=c/(a+b)` where `theta, phi, psi in (0, pi)` and `a,b,c` are sides of triangle `ABC` then `tan^2(theta/2)+tan^2(phi/2)+tan^2(psi/2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos theta=(a cos phi+b)/(a+b cos phi) then tan^(2)((theta)/(2)) is equal to

If 3(cos 2phi-cos2theta)=1-cos2phi cos2theta , then tan theta= k tan phi , where theta, phiin (0,(pi)/(2)) , where k =

If 3(cos 2phi-cos2theta)=1-cos2phi cos2theta , then tan theta= k tan phi , where theta, phiin (0,(pi)/(2)) , where k =

If 3(cos 2phi-cos2theta)=1-cos2phi cos2theta , then tan theta= k tan phi , where theta, phiin (0,(pi)/(2)) , where k =

If cos theta =(a cos phi+b)/(a+bcosphi) then ("tan"(theta)/2)/("tan"(phi)/2)=

If cos theta=(2 cos phi-1)/(2-cos phi) , then tan (theta)/(2)=

Eliminate theta, phi from sin theta + sin phi = a , cos theta+ cos phi = b and tan theta/2 * tan phi/2 = c.

If sin theta+sin phi=a and cos theta+cos phi=b find the value of tan((theta-phi)/(2))

If cos theta=(2cos phi-1)/(2-cos phi), then find the value of tan((theta)/(2))