Home
Class 10
MATHS
Prove : (sinA+cosecA)^(2)+(cosA+secA)^...

Prove :
`(sinA+cosecA)^(2)+(cosA+secA)^(2)=7+tan^(2)A+cot^(2)A.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities. where the angles involved are acute angles for which the expressions are defined. (sinA+cosecA)^(2)+(cosA+secA)^(2)=7+tan^(2)A+cot^(2)A

Prove the following identities,where the angles involved are acute angles for which the expressions are defined. (sinA+cosecA)^(2)+(cosA+secA)^(2)=7+tan^(2)A+cot^(2)A

Prove : (sin A + cosec A)^2 + (cosA + secA )^2=7 + (tan^2 A+ cot^2 A)

(sinA+cosecA)^2+(cosA+secA)^2=7+tan^2A+cot^2A

(sinA+cosecA)^2+(cosA+secA)^2=7+tan^2A+cot^2A

Prove that : (sinA+cosA)^(2)+(sinA-cosA)^(2)=2

Prove that : (sinA+cosA)^(2)+(sinA-cosA)^(2)=2

Prove the following identity, where the angles involved are acute angles for which the expressions are defined. (viii) (sinA+cose c A)^2+(cosA+secA)^2=7+tan^2A+cot^2A

Prove the following identities,where the angles involves are acute angles for which the expressions are defined:(viii) (SinA+CosecA)^2+(CosA+SecA)^2=7+tan^2+Cot^2A